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Abstract 

We propose a new approach to introduce Wilson lines on orbifold directly after 

the orbifold twist. A Wilson line corresponds to a representative vector of 

the conjugacy class of the apace group defining the orbifold. Wilson lines 

corresponding to different conjugacy classes are noncomnuting in general. 

This noncomnutativity may reduce the rank of the gauge group. This method 

makes possible to construct degenerate orbifolds on purely stringy basis with- 

out uaa of the potential argument in the field theoretical approximation. 
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The Wilson-line mechanism [l] in the framework of orbifold compactifica- 

tion is a powerful method in constructing four-dimensional chiral superstring 

mode I a [2-61 . All previous approaches have considered Wilson lines, i.e., 

constant background gauge fields in the underlying torus, before the orbifold 

twist, for which the topology of the manifold requires the Wilson lines to be 

convnutat i ve [2-41. In other words, Wilson lines are introduced as a homomor- 

phism of the translation defining the torus into Et* E;, so that the back- 

ground gauge field must lie in the Cartan subalgebra. 

In this paper we propose another new approach to introduce Wilson Iinea 

on orbifold directly, after the orbifold twist. This is done through consi- 

deration of a Wilson line corresponding to a representative vector of the con- 

jugacy class of the space group S defining the orbifold. In this case Wilson 

lines corresponding to different conjugacy classes are not necessary comnuta- 

tive and this noncoavwutativity may reduce the rank of the unbroken subgroup. 

Another method to reduce the rank of the gauge group was proposed by [7] by 

considering non-abelian ambedding of the space group in the bosonic formulation. 

There the background gauge fields were in the Cartan subalgebra so that the 

Wilson lines were represented by shifts in the E,x E; lattice. On the other 

hand, the embedding of the point group was made by Weyl rotations of the E,* E; 

lattice. In this paper we work in fermionic representation of the gauge 

degrees of freedom since it makes possible to treat the abelian and non- 

abelian embedding in a unified way. Especially ww can make purely stringy 

construction of the degenerate orbifold [S] without recourse to the field 

theoretical argument such as flat directions of the potential. 

Let ua consider closed string propagation on space-time with topology 

/o-d 
R X61 where a d-dimensional orbifold 6 is constructed by identifying 

points of d-dimensional euclidean space & under a apace group S of rotation 

and translation v: 6 = &!!/S [2]. A typical element of S takes au+ (Bzf+ v’ 
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and will be denoted by (B,v), where we take the orbifold to be even- 

dimensional and d = l,...,d/2 in complex notation. Elements of S correspond 

with the various twist fields or the twisted Hilbert space; in each twisted 

sector the string field obeys different boundary conditions. There is one 

sector of the Hilbert space for each conjugacy class of the space group S, 

since S is non-abel ian [2]. In what follows we consider Z, orbifold with d = 6. 

Generalization to other orbifold will be straightforward. 

For a 2, orbifold 6 is a single rotation of order N in SO(d) and the space 

group S for this orbifold consists of elements of the form (e’,v), where k = 0, 

1 ,...,N-1, @‘denotes the kth power of 6 and v runs over the d-dimensional 

lattice rd. For k = 0, the translation elements of S belong to conjugacy 

classes of the form {(l~,d’v”)} with vo fixed and j = O,l,...,N-1. These 

classes describe winding sectors. For k = l,..., N-l, there are several 

conjugacy classes in S, (@y’vx,+) , where vlc,, runa over some cosat of rd, 

V&f =I9 PVO a,+ +(1-8*)u 

P = O,l,...,N-1 

u t r, 

(1) 

for some fixed v& , which can be regarded as a representative of a conju- 

gacy class labeled by (k,f). The first index k I l,...,N-1 denotes ons of the 

N-l twisted sectors of the Hilbert apace. The second index f = l,...,n(k) 

labels a conjugacy class within that sector [g]. To each conjugacy class 

corresponds a representative vector v” 
@.f 

and we associate a Wilson line to this 

vector. 

Embedding of the apace group (0,~) into the internal degrees of freedom 

is done in both bosonic and fernionic formulation. Let us work in fermionic 

representation of the gauge degrees of freedom of the haterotic string [lo]. 

We introduce two sets of 16 termionic coordinates q’and q’(i = 1,...,16) 
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which transform as the vectors of SO(16)xSD(16~. The background gauge fields 

A: transform as (120,1)+(1,120). The Wilson line corresponding to a represen- 

tative vector vi,f of the conjugacy class (k,f) is given by 

@iA = exp[25i QJ (2) 

27~8~~ = A&f)' (3) 

The coset obtained by setting v:,~ = 0 is a sublattice of f’~, which is denoted 

by (l-O)& = {(l-B)u, u6 Pa}. For this sublattice the corresponding Wilson 

line must be identity so that APshould obey 

A,J(14)u]’ = 2zN , u G r, (4) 

where N is a matrix with integer eigenvalues. 

Embedding of a rotation of order N in SO(d) into the internal degrees of 

freedom is determined by giving the rotation matrix Jz for the fermionic coordi- 

nates qL and ‘$‘. By choosing appropriate basis of SO(16) x SO(16)‘, we can 

always diagonalize the J?. such that 

l5L = exp [2% i 3’Hf] , (5) 

N Y = 0 mod 1 

which obeys fi” = 1 and Hi (1~ l,..., 16) is the Cartan suba lgebra of SO(16) x 

SO (16)‘. For d/2 complex zR planes let us denote the unit basis vector e”,, 

e”, of the r, lattice such that the angle between two vectors is 2vN. Under 

the 274N rotation these basis vectors transform as ez+ e*,. So the Wilson 

lines corresponding to these basis vectors transform as 
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where @t,l is def i nod by (2) with 2% 8+ 1 = Ay(e:)‘, etc., since 

te, 0) (1, el) (8-l, 0) = (8, 0 q) cs-*, a 
= (l,cJ %I 
=(l,eJ . 

(7) 

For the singly-twisted and singly-antitwisted sectors, k =fl, there is a 

one-to-one correspondence between the conjugacy class (ox, v&) and the fixed 

point f of the rotation 8 or (9-l acting on the torus [g]. The conjugacy classes 

for the higher-twist sectors (k $il) are not usually in one-to-one correspon- 

dence with the fixed points of 8”. Some of the fixed points of Bxmay not be 

fixed by 6 so that physical states are 8 -invariant linear combinations of 

states located at different fixed points of e’[g]. The index f labels such a 

s-invariant combinations of fixed points. Since the 6 -invariant (combination 

of) fixed points obey f = 6”f and f =ef mod rd lattice, they are simultaneous- 

ly fixed for all twisted sectors k = 1 ,...,N-1. Thus the conjugacy classes for 

the higher-twisted sectors are in one-to-one correspondence with the 8 -invari- 

ant fixed points. 

Now that we have shown that the conjugacy class (k,f) is in one-to-one 

correspondence with the 8 -invariant fixed point labeled by f and also in one- 

to-one correspondence with the Wilson line @f,K given by (2). Then we can show 

that the Wilson lines @+,k and @+,r, corresponding to the same conjugacy class f 

obey the following commutation relation: 

CJfOf,k , J+@,J = O . (8) 

Proof: JC@+,, corresponds to (8, 0) (1, vi,,) = (ox, Oxvz+). Then the commu- 

tator in (8) is given by 

(flK’, oKv;+) (0: “‘vkq+) - ( kc) h ) 
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= (0”“: ,-j”‘“v,q, + e’v;J - ( kW h ) . 

Here we can show that 

8 
Kth o 

+ e 8 
n+h 

%t (IO) 

since the 0 -invariant fixed point f is a cornnon fixed point of both k- and h- 

twisted sector so that 

f = (l-8*)" ey v;,+ = (l-ok)-' ehv& (11) 

module (l-6)rd lattice. 

The operator c..&= JLx@+,‘r.w to the internal degrees of freedom can be 

thought of an automorphism of space rotation 0” : exp[2’Ttik/N] for zd, since 

[JL"q,J'=l. The conmutation relation (8) simply means that 2, is abelian. 

Note, however, that for different conjugacy classes or fixed points f # g, we 

have in general 

CJLE%, , aheD,,, 3 # 0 (12) 

and this nonconvnutativity may reduce the rank of the subgroup. Different auto- 

morphisms LI+~ and as,,, corresponding to different conjugacy classes or differ- 

ent 8 -invariant fixed points may not commute each other. The gauge quantum 

numbers of various states are determined by the zero modes of generators which 

commute with the hamiltonian and tic,,. So the gauge symmetry is broken to the 

subgroup which commutes with d+,x and noncommutative W’S may reduce the rank 

of the subgroup. 

In bosonic representation of the gauge degrees of freedom, an element of S, 

zd-9 (en z)” l VMYf is embedded as Xx+ (d X)’ + VkTf , I = 1,. . . ,16. Here J% 

is an automorphism of the group lattice, i.e., Weyl rotation and Vz+ is a 

Wilson line corresponding to the translation vx,+ in the conjugacy class (en, 

vc,+ ) . In th is representation the Wilson lines V I 

h,f 
are commutative since they 
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are homomorphism of translations vk,+ and they must be chosen to be in the 

Cartan subalgebra. Note, however, that the basis of the group representation 

for V:t may be chosen to be different for different conjugacy classes f. If 

we choose common basis for all conjugacy classes, this reduces to the case con- 

sidered in [7]. Noncommutativity between an automorphism & and translation Vzf 

of the group lattice may reduce the rank of subgroup. 

Although we can make parallel argument for bosonic and fermionic formula- 

tions, we work in this paper in the fermionic formulation, since it is easier 

to argue synasetry breaking in a unified way for both abelian and non-abelian 

embeddings. This also makes possible to construct degenerate orbifolds in a 

purely stringy way. 

In what follows we focus on the Z orbifold for which N E 3. In this case 

there are only singly-twisted and singly-antitwisted sector and there is a one- 

to-one correspondence between the conjugacy class and the fixed point of the 

rotation @ or 13~~ . The fixed point on the Z orbifold can be denoted by 

(p,q,r)d with d = J1/3 exp(i’X/6) and p,q,r = 0,Zl mod 3. Here p,q,r specify 

the location of the fixed point in the three complex z? planes. If we choose 

-a 
the unit basis vector of the rd lattice in the t” plane as g,^ = ez and e, = 

e: + e: , these basis vectors transform as g:,‘-, z: - ;; and 2z-t -$l. Then the 

representative vector of the conjugacy class (ex, f) corresponding to the fix- 

ed point f = (p,q,r) can be chosen as p%i + qe, -%+ re ‘J, which is a shift on the PA 

lattice for the fixed point to be accompanied under a group action [4]. The 

Wilson line corresponding to this representative vector amounts to 

@f,K = ~p[miC~u~+%b~+cc~> ] (13) 

where the background-field contribution is written by 

. . 
ZTLlK = (A&+ A -; ~ij)y 

(14) 
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and b,, ck are given by replacing &,’ by GG and g:, respectively. The 

generators of 50(16)x SO(16)r are denoted by T;j and ?Q . We can introduce 

at most three independent Wi lson I ines au, bu and cx. 

Automorph i sm tiJ,k of the Z,.,group action on z a is represented by the gauge 

fermions’f as the following boundary conditions, 

+‘(Q;+x,q;) = -wY2.Ke~,n +v(LT,(r,> ( I.5 ) 

y cq, Pa+%) = -d??Aho,~ ti co;,q I (161 

and matrix notation is understood here. n,m = 0,l specifies the spin structure. 

When the background gauge fields are taken in the Cartan subalgebra, all the 

Wi Ison-l ine matrices @+ x and the rotation matrix & are commutable and are dia- 

gonalized simultaneously: 

aK@+,n = df,U 
= tip C2,irXU+‘Hp 1 (17) 

and 
Q Q 

IT+ = <Q-t (pa,+ %b,+ ‘C, ) (I8 > 

where we have used the following relation, 

a, = 2a, , b,= 2b, , cz= 2c, , (19) 

3(ak, b,, ck) = integers mod 3 , (201 

which are derived by (4) or (6). This is the case of the abelian embedding and 

we can follow the previous works with the shift vector v ; [3,41. 

The condition of modular invariance in the presence of Wilson lines is 

given by the level matching condition at one-loop order [ll], which reads 

NZj v; = 0 mod 2 , (7-I) 

N { c-$ Cv,p)’ - C, (r”)‘> = 0 mod 2 , (22 1 
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where 5 = ;(1.1,-2,0) is the vector which defines the embedding of the Z~J 

group action in the spacetime right-moving Neveu-Schwarz-Ramond (NSR) fermions. 

The string states on the orbifold are invariant under the Z, group. The group 

invariant condition is obtained by constructing the projection operator onto 

the invariant subspace of the string Hilbert space, and is given by 

(Ve + k v$/2)vf + (Ka - k je/2)la + mx = 0 mod 1 (23) 

where VP is the vector in the E,x E, root lattice and Kais the vector in the 

SO(E) vector or spinor lattice [4]. The mk is the eigenvalue of i?~x, where the 

twist operator s,, for z’ is given by $, = exp(25i&J: $, z’ $;’ = e 
mv3 *a 

The gauge bosons are obtained in the untwisted sector by the combination 

with the right-moving ground states with helicityfl in 8, of SO(E), for which 

Kht4= 0. Then the group invariant condition (23) implies 

VI 2 c = 0 mod 1 , (24) 

and the symmetry corresponding to the root V’ obeying (24) for all vi remains 

unbroken. Massless fermions in the untwisted sector are combined with the 

right-moving ground states with helicity l/2 in 8, of SO(E), for which K’r9= 

213 mod 1. The group invariant condition (23) reads 

VP VP 
f 

= If3 mod 1 , (25) 

and the states obeying this condition for all vf survive as massless farmions. 

Chiral fermions in the twisted sector must obey the following massless condi- 

tion: 

+(v’+ v;)’ + NL -$ =0, 

+(K”-taf + NR- L = 0 , 
6 

(26) 

(27) 

where N‘and Ng are the occupation numbers for the left- and right-moving 
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osci I lators of F. The group invariant condition (23) is always satisfied by 

the states obeying (26) and (27) . Construction of models based on abelian 

embedding has been done extensively [3-61. 

Now let us consider more general case where the background gauge fields 

have components other than the Cartan subalgebra. In this case some or all of 

the automorphisms Q+‘s corresponding to different conjugscy classes do not 

convnute each other and are not diagonalized simultaneously. The gauge symmetry 

will be broken to the lower-rank subgroup which cosvsutes with allti$s. In 

order to quantize string states we need to diagonslize the boundary conditions 

(15) and (16). Diagonalization is done at each conjugacy class as follows: 

G’f,~ = sLKo+,, = u;(w++ k vi H, 3 U+ (26 > 

where U-f belongs to SD(16) x SO(l6) and eigenvs I ues vj must obey N v: = 0 mod 1 

due to Z,,, invsrience. The string states sssocisted.with each conjugacy class 

are expressed in the different basis which diagonslizes the corresponding boun- 

dary conditions. The Z, invariance of the string Hilbert space imposes now the 

condition (23) for the eigenvalues v: and the additional condition that the 

string Hilbert space should be invariant under U+ : 

-1 
‘J+ E, Uy = E, , (29) 

-1 
U4 H, U+ = Hi, (30) 

where Evis the generator corresponding to the root V of EoX Ei and Hp is the 

Cartan subalgebra. 

Gauge symmetry is determined now by (24) and (30), since the condition (29) 

is always satisfied for Evobeying (24) because the transformation generated by 

Ev leaves v+ invariant and commutes with U+ . This implies that the Uf invari- 

ance does not change the non-sbelian part of the subgroup determined by (24). 

The U(1) corresponding to He which does not obey (30) disappears now and the 
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rank of the subgroup is reduced. 

Matsless spectra of chiral fermions in the untwisted sector are determined 

by (25) and (29)) (30). Non-singlet multiplats with respect to the unbroken 

non-abelian subgroup survive under the Uf invariance since the generators of 

the non-abelian subgroup obey (29). On the other hand, singlets of the non- 

abelian subgroup may have the U(1) charge which is not invariant under (30) and 

are discarded. In the twisted sector, massless spectra are determined by the 

massless condition (26). The number of states in the twisted sector is the 

same as the case of the abelian embedding. 

Here a number of comments are in order. 

(1) The discarded zero modes are only singlets of the unbroken non-abelian sub- 

group, so that this truncation does not change anomaly cancellation with res- 

pect to the non-abelian subgroup. When the subgroup contains U(l), some of 

them might be anomslous, i .a., the trace of the corresponding U(1) generators 

is non-vanishing [12]. This anomaly is cancelled by the Green-Schwarz mechs- 

nism [13]. 

(2) Since the zero modes which are not invariant under U+ have been discarded, 

we must check modular invariance of the truncated theory. At one-loop order we 

can varify modular invariance explicitly by calculating the partition function. 

It turns out that the transformation Uf to diagonalire the boundary conditions 

disappears inside the trace of the partition function and we obtain the same 

partition function as the abelian embedding. Thus the level-matching conditions 

for the eigenvalue vt given by (21) and (22) are sufficient to keep modular 

invariance at least at one-loop order. The fact that the partition function 

does not depend on Uf implies that the (inner) automorphism corresponding to U+ 

is commutative with the modular transformation. Modular invariance is not 

affected by the rotation of the basis. 

Now we come to an important observation that apart from the U+-non-singlets 
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the syaxaetries and particle spectra are completely determined by the eigenvalue 

v; : Different Wilson lines with the same vi which are connected by Uf give the 

same syaanetry and mass spectra. Since the transformation U+ depends on the con- 

tinuous parameters, infinitely many Wilson lines are associated with the same 

eigenvalue vi. This mesns that the string vacuum is highly degenerate and it 

corresponds to flat direction of the potential in the field theoretical approxi- 

mation. This situation has been found by [8] in another approach of non- 

abelian embedding with the use of the Weyl rotations of the E,x E; lattice. 

In our approach, however, we can construct degenerate orbifolds on purely 

stringy basis without recourse to the potential by considering possible trsns- 

formation Uf of the eigen states determined by vf’. 

Stringy construction of degenerate orbifold is summarized as follows: 

First we choose the rotation matrix & given by (5) to embed the Z,., group act- 

ion. At this stage the symmetry Go is determined such that it is invariant 

under Sz. Then we introduce Wilson lines by giving eigenvalues v: which obey 

the condition of modular invariance (21), (22). The symmetry is broken as 

Go+ C,x U(l)‘s with no rank-reduction. If we rotate the basis by U+C Go, 

which comnutes with G,, some or al I of U(l)‘s are ki I led by (30). However, 

for some particular choice of Uf, (30) happens to lead to no or partial rank- 

reduction. This corresponds to the multicritical point for which there is an 

enhanced symmetry. Introduction of Wilson lines corresponds to giving vacuum 

expectation values (VW’S) to scalar fields in such a way that the D- and F- 

terms vanish. The transformation U+ corresponds to flat directions of the 

potential. Note that untwisted and twisted flat directions [E] are treated on 

the same ground by choosing appropreate Wilson lines. 

Let us consider simple examples, some of which were given in [3] by look- 

ing for flat directions. We can also construct new degenerate orbifolds which 

were not discovered in the field theoretical argument. We choose ZJ embedding 
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by giving the rotation matrix fi with 3<= e,*e2+eS -2e6+e,*2e: in the orthogonal 

basis. The resulting gauge group is determined by (24) with v+ = < and it turns 

out to be SU(9) 1 SO(14)’ * U(1)’ . The matter content is 3X{(84,l)u+ (1,14)-z+ 

(1,64),} in the untwisted sector and 27X (G,1)y3 in the twisted sector. 

Now we introduce Wilson lines. It is possible to choose various Wilson 

lines and they lead to various degenerate orbifolds. 

(i) We introduce one Wilson line, whose eigenvalue is given by 3v+ = 3<& (2e,+ 

e2+eJ) for f = (*l,q,r), q,r = 0, j-1 and v+ = < for f = (O,q,r). Then SU(9) 

breaks down to SU(3)X SU(3) ti SU(3) Y [U(l)]‘, where two U(l)‘s correspond to 

(H, *Hz) and (2H, +Hz*H3) . The matter multiplot in the untwisted sector turns out 

to be 3~{(3,9,3) + 3(1,1,1)} where quantum numbers of three singlets are Hi, 

(H, +HJ and (W, +Hz+H3) . Now we rotate the Wilson line by U+, the subgroup of 

SU(9), which leaves 5 invariant and commutes with [SU(3)13. Then two U(l)‘s 

and 3X2 singlets are projected out by (30). The matter content in the twisted 

sector does not change under U+ and is given by 27% {(1,3,1) + (1,1,3) + 

(3,1,1)}. This example corresponds to the model given in [8] with non-vanish- 

ing vev’s to some components of the 84-dimensional representations in the un- 

twisted sector and we can reproduce their result by purely stringy method. 

(ii) As the second axsmple we introduce two Wilson lines whose eigenvalues are 

given by 

3 ‘t =3< + p(20, -0: l e;) + 4(es-e,7*2e?) I (31) 

for the conjugacy class f = (p,q,r), p,q,r = 0,fl mod 3. Here the symmetry is 

broken to (U(l)]' x SO(12j x [U(l)']'. If we rotate Wilson lines by U+= SU(9) 

all U(l)'s from SU(9) are killed by (30) and the remaining gauge group is 

SO(12{ x pJ(l)'ll. In the untwisted sector the matter content turns out to 
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(8481) - 9U,l) 

(1,14) - (1,W l 2(1,1) 

(1864) - 2(1,32) 

and in the twisted sector 27x9 singlets. This example corresponds to the model 

in [8] with vev’s to the nine G’s in the twisted sector and the 14 in the un- 

twisted sector. 

In the field theoretical argument it is generally complicated task to look 

for flat directions of the potential with vanishing D- and F-terms. In stringy 

construction of degenerate orbifold, the flat direction with vanishing D- and 

F-terms is automatically chosen by introducing Wilson lines which satisfy the 

condition of modular invariance. It is essy to construct other models with the 

choice of Wilson lines. If we take one Wilson line, 3v+ = 3< + p(e,-eg+ 2ei), 

We have the gauge symmetry breaking as SU(9) +SU(7) x @J(l)]‘. Rotating the 

basis by the SU(3) subgroup of SU(9) which Iesves SU(7) invariant, two U(l)'s 

are projected out and the resulting gauge symnetry is SU(7) x SO(12)’ x [U(l)' 1'. 

To conclude we have proposed a new approach to introduce Wilson lines on 

orbifold directly after the orbifold twist. A Wilson line corresponds to a 

representative vector of the conjugacy class so that it is not commutative in 

genera I . This noncommutativity may reduce the rank of the gauge group. Our 

method easily gives purely stringy construction of degenerate orbifold with- 

out use of the potential argument. This makes possible to construct wide 

variety of models including SU(3)X SU(2)xU(l), which will be give in detail 

elsewhere. 
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